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Abstract-—A computational approach to limit solutions is considered most challenging for two
major reasons. A limit solution is likely to be non-smooth such that certain non-differentiable
functions are perfectly admissible and make physical and mathematical sense. Moreover, the
possibility of non-unique solutions makes it difficult to analyze the convergence of an iterative
algorithm or even to define a criterion of convergence. In this paper, we use two mathematical tools
to resolve these difficulties. A duality theorem defines convergence from above and from below the
exact solution. A combined smoothing and successive approximation applied to the upper bound
formulation perturbs the original problem into a smooth one by a small parameter ¢. As¢ — 0, the
solution of the original problem is recovered. This general computational algorithm is robust such
that from any initial trial solution, the first iteration falls into a convex hull that contains the exact
solution(s) of the problem. Unlike an incremental method that invariably renders the limit problem
ill-conditioned. the algorithm is numerically stable. Limit analysis itself is a highly efficient concept
which bypasses the tedium of the intermediate elastic-plastic deformation and secks the most
important information dircctly. With the said algorithm, we have produced many limit solutions
of plane stress problems. Certain non-smooth characters of the limit solutions are shown in the
examples presented. Two well-known as well as one parametric family of yicld functions are used
to allow comparison with some classical solutions,

INTRODUCTION

The theory of plasticity has become an important scientific foundation for optimal design
of metal structures and machinery. [t is not that modern designs are intended to function
beyond the elastic limit, they arc not. Plastic designs are more uniform in strength and
thercfore less prone to weuk links. They are more accurate in predicting failure conditions
and thus provide precise safety factors for overloading caused by natural disasters and
human errors. Plastic designs also lead to savings of materials and hence a reduction in
weight and cost. All these advantages should have attracted a crowd of engineers to research
and practice the theory of plasticity. But like good things in life, it carries a higher price
tag. Plastic analysis and designs are much more difficult than their elastic counterpart.
Plastic constitutive relations are inherently non-linear and non-one-to-one. Mathematical
difficulty and the need for large-scale computation involved in solving meaningful problems
have encumbered the early development of plasticity and still make the progress of this
branch of mechanical science slow.

Recent explosive advances in the capacity and speed of computers have made plastic
analysis computationally practical. Growing demands for crashworthy vehicles, accident-
tolerant nuclear facilities and earthquake-resistant structures have made plastic designs
indispensable. Rencwed interest in plasticity has becn abreast. Two types of analyses,
incremental and asymptotic, have been promoted and pursued.

The asymptotic approach to plasticity is known as the limit analysis. Although the
theory was first developed in the 1950s in an ad hoc manner, recent work on limit analysis
(Maier et al., 1972; Martin, 1975; Strang er al., 1978 ; Temam, 1984; Yang, 1987) has
merged it with an exciting field in modern mathematics known as mathematical pro-
gramming (Luenberger, 1984). Benefitting from cross-fertilization and progress made in
other fields, a concise architecture of limit analysis has now emerged with new physical
interpretation, rigorous mathematical formulation and efficient computational method-
ology. We shall briefly describe its framework as a mechanics problem, interpret a model
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of asymptotic behavior of a material. state a variational principle of duality. develop a
computational algorithm and finally present some examples. Although the concepts apply
to general limit analysis, all discussions in this paper pertain only to the class of plane stress
problems.

LIMIT ANALYSIS OF PLANE STRESS PROBLEMS

From a vector (or function) space point of view, a solution of a mechanics problem
lies in the intersection of three fundamental sets, namely the statically-admissible set S, the
constitutively-admissible set C and the kinematically-admissible set K. If the intersection is
empty. there exists no solution. If it consists of a single point. the solution is unique.
Otherwise, there is a set of feasible solutions of which one may be the most preferred
(optimal). The criterion for choosing the optimal solution is facilitated by an objective
function. Since § ~ C ~ K'is a subset of S » C, the optimal solution contained in the former
is obviously in the latter. The primal (or natural) formulation of a limit analysis problem
seeks an extreme point in § n C as its optimal solution.

The asymptotic behavior of some metals is exhibited by their great ductility. A one-
dimensional model uses a hardening function, such as that of Ramberg and Osgood (1943),
to describe the results of a tensile experiment, from the initial yicld point to the subsequent
(higher or equal) yield points. Classical limit analysis assumes a perfectly-plastic material
such that it does not harden or the hardening function is a constant. the yield stress. We
shall remove this assumption and only require that the hardening curve asymptotically
approaches a constant state of stress, the true limit of the material’s stress-bearing capacity.
A three-dimensional model generalizes the concept of a yicld point to a surface in the space
of the stress matrices, R' . The surfaces representing the initial and subsequent yiclding
behavior are described by 4 yield function with parameters to account for the hardening
behavior. The assumption that the hardening function has a constant asymptote implics
the existence of an envelope that encloses all yield surfaces. We shall call this envelope the
asymptotic yield surfuce. The states of stresses bounded by the envelope are feasible and a
stress state outside the evelope cannot be attained. This model of plastic behavior s called
asymptotically perfect.

The elastic property of the material is not needed in the analysis but nor is it explicitly
excluded by the constitutive inequality. We only assume a large elastic modulus so that the
deformation remains small before an impending failure. This departure from the rigid,
perfectly-plastic model of classical limit analysis does not change the nature of the problem,
only broadens its applicability. A Lagrangian coordinate system is used to describe defor-
mation and equilibrium about the undeformed state.

A state of plane stress in a thin sheet is represented by a symmetric 2 x 2 matrix
function,

(0 a.\‘)'
o= v O = Oy (l)
G,c O

whose components are rcal functions of (x.y) and its eigenvalues are denoted by o, and a3,
also functions of (x, ). A stress distribution in the sheet, being a matrix function defined
in a domain D in the (x, y)-plane, is regarded as a point in the function space R***(D). The
asymptotic behavior of the sheet for the limit analysis to be presented in this paper is
modeled by

lollg = /oi—fa,0:4+0i S0, —2<f<2 )

where ¢, is a constant, the asymptotic yield stress. and the range of the parameter f8
guarantees convexity of the yield functions defined by the f-norm. The use of a norm
notation appropriately reflects the intended convexity and conveys the meaning of a bound
on the stress matrix. The f-norm reduces to the well-known von Mises yield function when
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= 1 ( von Mises )

Fig. 1. Family of f-norm functions and the Tresca yield function.

f is cqual to unity. The case i = 0 corresponds to the Frobenius norm of a matrix and is
sometimes chosen for its mathematical convenience. The proper choice of ff is of course the
best fit to the experimental data of a specific material. The ff-norm family of yicld criteria
for the range 0 < f# < | and the well-known Tresca criterion are shown in Fig. 1. Incquality
(2) defines the constitutively-admissible sct C < R***(D).

The statically-admissible solutions of a plane stress problem satisfy the equilibrium
equation V- ¢ = 0 in the domain D and the static boundary condition o*n = t on the part
of the boundary ¢ D, where a given traction vector t is prescribed. These solutions form the
statically-admissible set S = R***(D). A limit analysis problem secks an extreme point in
S~ C that maximizes the applied load in its proportional form, gt, where ¢ is a positive,
real scaling factor. The constrained maximization of the objective functional ¢(a) in the
form

maximize ¢(a)

subjectto V-a=0 in D
/ (3)

grmn=qgt on CD,

“6”(11» <0y

defines the primal formulation of limit analysis for the plane stress problems. Since the
equilibrium equation is lincar and the constitutive inequality is convex, the intersection
L = §n Cis convex. Problem (3) is a convex programming in the function space R***(D).
It is also called the lower-bound formulation in plasticity and L is called the lower-bound
solution set since every point in L corresponds to a value of ¢ either lower or equal to the
maximum value g* sought.

DUALITY

A convex programming problem has a dual problem whose minimum is equal to g*.
To construct the dual problem of (3). we begin with the weak equilibrium equation
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J‘u-(V'a)dA=0‘ 4
D

where u is an arbitrary function in R*(D) with the physical interpretation of an admissible
velocity function. An admissible u which satisfies the kinematic conditions (homogeneous
for the problems in this paper) on the part of the boundary D, complementary to D, and
derives meaningful quantities under a generalized divergence theorem will lead to the
equivalent variational statement

Ja:sdA=qJ t-uds, (5)
D D,

where ¢ = }(Vu+ Vu') is the 2 x 2 strain rate matrix and : denotes the inner product operator
between two matrices. All such functions. u, form the kinematically-admissible set K = R*(D).
Since certain non-differentiable functions are admissible in (5), this relaxed variational
principle greatly enlarged the set K from the set of compatible strains defined in the theory
of elasticity (Timoshenko and Goodier, 1970). Since u appears homogeneously in (5),
implicitly in € on the left-hand side. we may normalize the boundary integral such that

J t-udS =1 (6)
oD,

which also implics that the integral does not vanish and o:¢ > 0. We shall add (6) to the
conditions of kincmatic admissibility which will be defined more precisely.
A generalized Holder inequality

toel < llallwlell p (n

was recently established by Yang (1991), where the (—ff)-norm is called the dual of the
(#)-norm. In terms of the eigenvalues £, and ¢, of the 2 x 2 strain rate matrix &,

lelom = == ol + By + 3. ®)

J1- (/1/7)2

Inequality (7) is sharp, meaning that equality holds when ¢ is chosen to be proportional to
the gradient of the yield function. This sharpness condition

&= kVHo’]I(,,) 9

is the well-known normality condition of Drucker (1959) in plasticity, where k is a pro-
portional factor. Represented in the principal stress space of Fig. 1, is a principal strain
rate in the form of a vector ¢ = (¢, &.) associated with a state of yield stress (o, o.)
(a point on the yicld surface), which is normal to the yield surface.

Using (2), (5). (6) and (7), we can establish a sharp upper bound to the functional g(o)
by the sequence of inequalitics

q= J;O':edA < J; "0'”(m lell-pdA < GOJ;) Ilt:ll(,_,,)dA = §(u), (10)

where G(u), the upper bound functional, depends only on the kinematic functions ue K.
The correct choice of K is studied in the deeper and still ongoing research of functional
analysis and calculus of variations (Cesari er al.. 1988). A proof of the existence of an
absolute minimum for functionals like §(u) has been obtained.
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Based on the sharp inequalities in (10) and the existence of the absolute minimum of
g(u). we may state the dual problem (or the upper bound formulation)

minimize §(u)

subject to  G(u) = UOJ Nell(-p dA,
D

f t-udS =1,
eD,

kinematic boundary conditions on ¢D,.

(I

The smallest function space, whose elements satisfy the constraints in (11) and at least
one of them produces the absolute minimum of the objective functional, defines K. When
the absolute minimum of §(u) is attained, we can realize the duality relation

max ¢(¢) = ¢* = min §(u). (12)

In reality, only in the simplest cases can (11) be solved exactly. General solutions of (11)
must be obtained numerically. In this paper, the upper bound functional is first discretized,
then a combined smoothing and successive approximation algorithm [see Ben-Tal er al.
(1991)] is used to solve the finite-dimensional minimization problem. We have successfully
obtaincd many plane stress limit solutions, some of which are presented in a later section.

FINITE-DIMENSIONAL APPROXIMATION

We shall use a finite element method [sce Zienkiewicz (1977)] to discretize the dual
problem (!1) and to reduce it to a convex programming problem in a finite-dimensional
space R", where n is the total number of discrete variables. The standard three-node
triangular elements are chosen to discretize the domain. The velocity field in each element
is approximated by a lincar function. From this assumed elemental velocity function the
strain rate is therefore a constant matrix in each element. The integral representing the
upper-bound functional §(u) in (11) is approximated by a sum

E
gy =Y JU'AU (13)

e=|

where U is the vector representation of the velocity function u, ¢ transposes a vector, A, is
the elemental “stiffness matrix™ generated by the finite element method and the integer E
is the total number of elements. From the elemental view point, the velocity vector and the
matrix A, have dimensions 6 and 6 x 6, respectively. However, the scalar product U'A4,.U
in each term of the sum is interpreted as a product formed in R" where Ue R” is the global
velocity vector and A, is embedded in an a1 x # null matrix.

Similarly, the normalization equation {t-u dS = | is approximated by C'U = |, where
CeR"is a constant vector. The finite-dimensional approximation of (11) takes the form

minimize §(U)
E
subjectto §(U) =Y JU'A.U (14)
ew |

CU=1

where the parameters o, and 8 as well as the kinematic boundary conditions are absorbed
into the matrices A4, and the vector C.
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[t can easily be shown that each A, is positive semi-definite and \/ U*4,U is a convex
function in R". Since the sum of convex tunctions is convex. §({’) is convex and has a
unique minimum value.

One last obstacle 1s still in the path of a numerical solution of (14). The matrices A,
are only positive semi-definite such that the product " 4, L may vanish for some non-trivial
vectors (. The square-root functions are not ditferentiable at the zero value of their
argument. This non-smoothness in the derivatives may cause trouble in the gradient or
Newton-like algorithms of minimization, ¢.g. Broydon (1967). An attempt to evaluate the
gradient of a square root near a zero argument may cause computational overflow. We
chose a small real number ¢ as the smoothing parameter to remove this difficulty. It led to
a perturbed objective function

.
§U.e) =Y JUAU+e (15)

e=1

which is differentiable everywhere for ¢ # 0 and remains convex. The perturbed function
recovers its original value as ¢ — 0.

Using a Lagrangian multiplier Z to convert the constrained problem (14) into an
unconstrained one with the perturbed objective function in (15), we minimize instead

H(U) = g(l.e) - i(C'U~1) (16)

whose minimum solution satisfics the condition ¢¢/cU, =0, i=1,2,....n After per-
forming these partial derivatives, a system of equations is obtained. In matrix notation, the
system

AU = iC (17)

has a global stiffness matrix

I ”'r
T

sty i/"xrl,,vUﬁ-{— P

which is regarded as a constant matrix in cach iteration and is updated from iteration to
iteration. For a given vector U, a constant matrix A can be evaluated. Equation (17) is
treated in cach iteration as a lincar system to be solved repeatedly with an inner and an
outer iterative sequence.

Symbolically, a solution may be expressed in terms of the inverse of A (which is not
computed in practice) such that

U =:id 'C (18)

where 4, still an unknown quantity, can be evaluated by the condition C*'U = | to obtain
(19)

The outer iteration is associated with a decreasing sequence of €. With each fixed value
of &, an inner iteration begins with a known vector U so that the stiffness matrix 4 in (17)
can be evaluated initially. The solution of (17) in each inner iteration is used in a feedback
loop to update A and /. A converged U, under a suitable stopping criterion terminates an
inner iteration loop. Then ¢ is reduced and another inner iteration begins. Only in the first
inner iteration is an initial vector U'® assumed. The subsequent inner iterations use the
converged solution for the previous ¢ as its initial vector. We need only a few values of ¢ to
extrapolate to the limit. £ —» 0. From any initial vector U'™, the subsequent iterates are
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locked in a certain convex hull defined by the data of the discrete problem (14). This robust
initial convergence and the rate of convergence for the subsequent iterations are discussed
in Ben-Tal ez al. (1991).

CIRCULAR SHEET WITH A CONCENTRIC HOLE

The first application of a newly-developed methodology must be a test of its ability to
reproduce a known result. A circular sheet with a concentric hole under axisymmetric
loading has an exact solution obtained by a non-numerical method for = 1, the von Mises
case. The exact solution can serve as a comparison to test our numerical algorithm.

We choose the exact limit solution of Kachanov (1971) as the bench mark for compari-
son. A circular sheet of radius b with a centered hole of radius a is subjected to an
axisymmetric tensile loading at the outer radius. The simplicity of this problem also allows
both primal and dual solutions to be obtained computationally. The numerical solutions
from maximization and minimization offer a self-check for accuracy and duality. They are
shown in Table 1 for various a/b ratios and a fixed § = 1. The small duality gaps between the
upper and lower bound solutions are due to numerical errors inherited from a terminating
criterion.

The exact solution of Kachanov (1971), shown in Fig. 2 for the von Mises yield
function, falls within the gaps. a strong verification of the dual variational principle and
the algorithm. The exact solution for the Tresca criterion, plotted as the dotted curve below
the solid curve for the von Mises criterion, confirms a long standing conjecture that a larger
constitutively-admissible set will not result in a lower collapse load. Both curves approach
the value ¢* = | continuously as a/h — 0, suggesting that a small imperfection in the
material does not cffect its foad-carrying capacity. This comforting property of ductile
material differs markedly from the britde fracture theory derived from small imperfections.

The velocity ficlds under the collup.s‘LT conditions as functions of radial positions are
plotted in Fig. 3 for various a/b ratios. Except for the case a/b = 0 (no hole), strain rates
in the r-direction (du/dr) are negative near the hole. This is due to the uniaxial nature of
the stress field in the circumferential direction near the hole, producing thinning in both the
r- and z-directions.,

If the loading is applied at the inner radius «, the domain ¢ < r < b can be regarded
as the flange portion of a circular sheet in a deep drawing process in which the sheet is
drawn into a cup by a die and punch press [see Avitzur (1968)]. The key question in this
manufacturing process is the ability of the material to be drawn for a given flange size. The
process will be successful only if the entire flange can undergo plastic deformation due to
the inward drawing force. A failure of the process is called choking in that only the innermost
part of the flange deforms plastically. The rest of the flunge remains stationary, resulting
in rapid thinning and thus tearing near r = «. The largest flange (minimum «/b ratio) that
can be drawn increases with increasing ff for a material modcled by the ff-norm yield criteria,
as shown by the dotted choking limit curve at the top of all curves in Fig. 4. We extended

Table 1. Upper and lower bound solutions for a circular sheet of
radius b with a concentric hole of radius a

aih Upper bound (§) Lower bound (¢)  Gap (%)

0.0 1.0 1.0 0.0

0.05 0.99306348 0.99242223 0.064
0.1 097192178 0.97062629 0.133
0.2 0.89543868 0.89421282 0.137
0.3 0.79202212 0.79113852 0.112
0.4 0.67644796 0.67585636 0.087
0.5 0.55720578 0.55660137 0.108
0.6 0.43793322 0.43776690 0.038
0.7 0.32176233 0.32168261 0.025
0.8 0.20959000 0.20953326 0.027
0.9 0.10235899 0.10228872 0.069
1.0 0.0 0.0 0.0

S\8 2R:6-F
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Fig. 2. Collapse loads of circular sheet with concentric hole of radius @ under axisymmetric loading
at its outer radius .
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Fig. 3. Velocity distributions in circulitr sheets with various hole sizes.
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Fig. 4. Drawing loads and flange limits of cup drawing process.

the computation to the case fi = 1.5, The f-family resembles Hill's (1950) anisotropic
models of rolled sheet metals with a parameter R. The trend of formability in the Hill and
f models of materials are similar.

A STRIP WITH AN ELLIPTIC HOLE OR TWO SEMIELLIPTIC NOTCHES

Elastic solutions of a tension strip with a centered clliptic hole or two oppositely-
located semiclliptic notches have been studied in great detail as regards the effect of stress
concentration in elasticity. As the ratio of the principal axes of the ellipse h/a approaches
zero, the singular stress ficld near a crack tip is of great significance in predicting brittle
fracture [sce Williams (1957)]. Such an approach is invalid for ductile materials like metals.
In plasticity, the stresses are bounded and thercfore no severe concentration may occur, let
alone a singular stress field. Instead, strains may concentrate. The forms of concentration
in plastic deformation difTer greatly from that of a singular stress field in elasticity. A kink
in a beam, a neck in a tensile bar and a slip band in a body have mathematical representations
of non-differentiable or even discontinuous functions. To capture these phenomena com-
putationally is challenging.

Let the transverse axis « of the ellipse be made equal to onc-fourth of the width of the
thin strip. Several ratios of the principal axes, b/a, of the hole or notches between 0 and 2
are chosen for our computation of collapse loads and velocity fields. The collapse loads are
shown in Fig. 5, from which two phenomena are observed. First, the strip with a hole is
always weaker than that with two notches of the same cut-out area. This means that an
interior flaw in a material is more serious than a comparable boundary defect. When the
ratio h/a decreases for a hole or notch, a lesser amount of material is being cut out and the
collapse load increases. The sccond obscrvation agrees with another long-standing con-
jecture in plasticity, that added weightless material to a structure will not decrease its
strength. Adding material to make a hole or a notch into a crack is of course the most
incfficient usc of material. Nevertheless, the results fulfill the prophecy of the conjecture.
When the linear theory of elasticity is used, onc shall reach just the opposite conclusion
that a strip with a crack is infinitely weaker than a strip with a hole of the same width.
Ductile failure of a structure cannot be predicted by the linear theory of elasticity.

The collapse modes in terms of velocity fields and grid distortions are shown in Figs
6 and 7 for an internal crack and two elliptic notches, respectively. By symmetry, only a
quadrant of the domain is presented. The velocity fields show that the major portion of the
sheet undergoes rigid body motion. Deformation is concentrated in narrow bands near the
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weakest cross-section. This common phenomenon in plastic deformation is often referred
to as localization by Rice (1976). The non-smooth functions involved in the solutions can
cause trouble in some computational methods. Our algorithm has successfully captured
this non-smoothness in the limit solutions. The results confirmed certain classical solutions

q*

Fig. 6. Velocity field and deformed grid as rep
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Fig. 5. Limit loads of tension strips with efliptic hole or notches.
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strip.

and extended the range of parameters to cover new cases.
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Fig. 7. Velocity ficld and deformed grid as representations of collapse modes of a notched tension
steip.

CONCLUSION

A general algorithm has been developed and successfully tested for limit analysis of
plane stress problems. The algorithm is built on sound physical, mathematical and com-
putational foundations. The purametric i-norm yicld functions can certainly fit the behavior
of a wide class of materials. The duality theorem helps to discern the direction and rate of
convergence when an iterative approach is applied to cither the primal or the dual formu-
lation. When the primal and dual problems are solved simultancously, the closing of the
duality gap provides the true indicator of convergence, especially in the case when the
iterative solution vector wanders indefinitely between equally-acceptable but non-unique
solutions. The combined smoothing and successive approximation method homes in
robustly on a correct non-smooth optimal solution.

The example problems presented are certainly non-trivial. Even the seemingly-trivial
axisymmetric problem provides the comparison with the exact solutions needed for checking
the algorithm. It reveals the effect of the hole size. As the radius of the hole approaches
zero, the strength of the sheet uniformly approaches that of a flawless sheet. Insensitivity
to small defects is a very desirable property of the ductile materials. It also produced new
results for a wide class of f-family materials to indicate the trend of formability in the deep
drawing process. Furthermore, the collapse loads for the von Mises criterion being equal
or greater than that for the inscribed Tresca criterion lends credence to a long-standing
conjecture that a larger constitutively-admissible set will not result in a smaller collapse
load.

The problem of the holed or notched tension strip reveals again a major difference
between elastic and plastic response towards material defects. Geometric variations of the
hole and notch with the limiting cases of cracks confirm another well-known conjecture in
plasticity, that added weightless material will not weaken the structure. The non-smoothness
of the solutions captured by our computation further confirmed the good mathematical
analysis that goes into the algorithm.

The large mesh systems, multitudes of material and geometric parameter variations
and double-sequenced iterative loops should make the computational task executed for this



738 H. HuH and W. H. Yo

paper comparable to any major project. The general algorithm tor limit analysis has
performed well for the plane stress problems with very acceptable accuracy at a quite
modest cost. Computations for each example problem and their parametric variations
converged under 30 total iterations with AL}, < 0.001 between two consecutive iterative
solutions as the stopping criterion. The outer sequence uses only three values of &, 0.1,
0.01. 0.001. The accumulative CPU time on an Amdahl 5860 computer for all example
problems was a mere 10 min. We are now considering implementing the algorithm on
a microcomputer.
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